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Abstract—SpiNNaker is a novel SoC design with embedded
low-power ARM processors. A system comprising multiple
chips can provide a simulation engine for very large scale neural
network simulations in real-time. The system has specifically
been designed to support biologically inspired spiking neuron
simulation as a real-time event-driven application. We have
devised a novel technique to efficiently configure the system
and support application development using an event driven
application model by abstracting the architectural intricacies
from the application developer. The main objective is to provide
an efficient and fault-tolerant interface to the developers to
make optimal use of the design features with minimal code

size, meeting hard bounds of a real-time application.

I. INTRODUCTION

THE SpiNNaker Massively Parallel Neural Networks

Simulator is based on System-on-Chip (SoC) archi-

tecture to support parallel distributed computing for high

performance and fault-tolerance. The whole SpiNNaker sys-

tem comprises a network of smaller SoCs working as Chip-

Multiprocessors (CMP) each consisting of 20 low-power

ARM968S-E processing cores which can run neural dynam-

ics models independently. The system has been designed

to mimic neural computation [1] which is characterized

by massive processing parallelism and a high degree of

interconnection among the independently working processing

units [2]. However, contrary to typical parallel computing

models, the embedded processors do not rely on shared

memory message passing to synchronize independently run-

ning processes. The system is highly scalable to support

a neural simulation from thousands to millions of neurons

with varying degree of connectivity. A full scale computing

system is expected to simulate over a billion neurons in real-

time employing over a million processing cores to simulate

the behaviour of a part of neocortex. To support intense

inter-neuron communication, a highly efficient asynchronous

packet-switching routing network has been devised to con-

nect the embedded processing cores. Figure 1 shows a logical

view of the SpiNNaker computing system. The network is

used for inter-process communication among the processing

cores using small (40-bits) packets.

Inspired by the structure of the brain, the embedded

ARM968 processing cores have been arranged in indepen-

dently functional and identical Chip Multi-Processors (CMP)

for fault-tolerent and scalable distributed computing. Each

embedded core is self-sufficient in memory required to hold

the neural modeling code and the neuron states of a number

of neurons depending on the complexity of spiking neuron’s

model, while the chip has sufficient memory to hold synaptic
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Fig. 1. Multichip SpiNNaker CMP System.

information for the neurons in the system connected to

the local neurons. The system at the chip- and system-

level has sufficient redundancy in processing resources and

communication infrastructure to provide a high level of fault-

tolerance. The platform makes a large-scale neural simulation

possible in real-time which would otherwise take days to

simulate with a software simulation on a personal computer

(PC). This real-time embedded system can be used as a

‘brain’ for a robot [3] to simulate real-time stimulus-response

behaviour of a living being.

To support the standard application model of spiking

neurons simulation on SpiNNaker an event-driven software

model has been proposed that is quite different from a typical

parallel application. To conserve energy and thus to reduce

the heat dissipated from over a million processors, each

embedded processor remains in sleep mode. The processors

are woken up normally by neural events like the arrival of

spike or the time when each neuron needs to update its

state etc. The processor handles the event using a specific

embedded service routine before going to sleep again. Un-

like other parallel processing applications, no continuously

running processes are created on the embedded cores. The ar-

chitecture requires a novel technique to configure the system

and to support a different kind of application model running

on it. As part of this research, we have devised a novel

mechanism to configure this system, load the application and

support the running of spiking neural simulations using an

event driven application model. Besides this, we provide a

hardware abstraction layer to help the application develpers
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Fig. 2. Embedded ARM Core with Peripherals.

making optimal use of the design features without knowing

the architectural complexities of the system.

II. SPINNAKER ARCHITECTURE

The SpiNNaker SoC has been designed to support highly

parallel distributed computing with high bandwidth inter-

processors communication. 20 ARM968 processing cores are

embedded into each chip with a dedicated tightly-coupled

memory that can hold 32KB of instructions and 64KB of

data [4], sufficient to implement a fascicle (group of neurons

with associated inputs and outputs) of about 1000 sim-

ple spiking neurons. Each embedded processor is provided

with other peripherals such as a Timer, Vector Interrupt

Controller (VIC), Communication and DMA Controller to

support neural computation as shown in Figure 2. Besides the

ARM cores’ private memory, each chip also has an off-chip

SDRAM of up to 1GB to hold connection information like

synaptic weights and axonal delays. The off-chip memory

module supports easy upgrading of memory a size as large as

required by the application. The SDRAM is connected to the

processing cores through the DMA Controller via an asyn-

chronous Network-on-Chip (NoC), a high-bandwidth shared

medium among the 20 embedded cores [5]. The network is

called the System NoC and it provides a bandwidth of 1Gb/s.

Other chip resources, like the System RAM, Boot ROM,

System Controller and the Router Configuration Registers are

also connected to the processing cores via the System NoC as

shown in Figure 3. The asynchronous NoC provides a much

higher communication bandwidth with lower contention and

a very low power consumption [6][7] compared to any typical

bus architecture.

To support event-driven modeling of spiking neurons as

described in [8], the Timer generates an interrupt with a

millisecond interval notifying the processing core to update

each neuron’s state [9]. Another event is generated by the

Communication Controller on receipt of a spike in the form
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Fig. 3. SpiNNaker CMP.

of a multicast packet from some other fascicle neuron. The

Communication Controller is also responsible for forming a

(40-bits) packet with source identifier (containing the firing

neuron’s identifier along with its fascicle identifier and chip

address) on behalf of firing neurons in the fascicle. The

spike transmission is carried over yet another asynchronous

NoC called the Communications NoC. The hub of this NoC

is a specially designed on-chip multicast router that can

route packets (spikes) to 20 internal outputs corresponding

to on-chip processing cores and 6 outward links towards

other chips as a result of source-based associative routing.

Each chip has links from its six neighbours that terminate

in the Communications NoC where these, along with the

internal packets, are serialized before passing to the router.

The six two-way links on each chip extend the on-chip

Communications NoC to the six neighbouring chips to form

a system-wide global packet-switching-network. A system of

the desired scale can be formed by networking chips with the

help of these links, continuing this process until the system

wraps itself around to form a toroidal mesh of interconnected

chips as shown in Figure 1. The router contains 1K words

of associative memory as a look-up table to find a multicast

route associated with the incoming packet’s routing key. If a

match is not found, the router passes the packets towards the

link diagonally opposite to the incoming link. This process

is called ‘default routing’ and helps in reducing the number

of entries in the look-up table. The global packet-switching

network to support spike communication has been hierarchi-

cally organized. On the global network, only chip addresses

are visible. Each chip maintains a chip-level private subnet of

20 fascicle processing cores that is visible only to the local

router, while an individual neuron’s identifier is local to the

processing core. With this scheme we can manage to access

all neurons with limited number of entries in the routing

tables. To deal with transient congestion at the outer links,



the router can route a packet to its adjacent link as a measure

of emergency routing. The neighbouring chip’s router aligns

the packet back to its correct path. The router is an efficient

hardware component that can route one packet per cycle at

200 MHz. The Communications NoC supports up to 6 Gb/s

per chip bandwidth [6]. The router can also route point-

to-point(P2P) and nearest neighbour(NN) packets which are

used for system management and debugging/configuration

purposes. With an NN packet a chip can look into the state

of its neighboring chip and write into its chip level memory.

The router can broadcast an NN packet to all neighboring

chips.

The SpiNNaker system is connected to a personal com-

puter called the Host System by linking one (or more) chip(s)

through an on-chip Ethernet link. The system is configured

at boot-up and the routing tables are computed and loaded

to each chip as per the application’s setting with the help of

the Host System. The application is injected to the connected

chip(s) using Ethernet frames, from where it is flood-filled

to other chips via the global asynchronous packet-switching

network.

III. APPLICATION MODEL

SpiNNaker is an application specific integrated computing

(ASIC) system that has been specifically designed to sup-

port large scale spiking neural network simulations in real-

time (as suggested by the project name, Spi(king) N(eural)

N(etwork) a(r)ch(it)e(ctu)r(e)). The architecture supports

simulation of biologically plausible spiking neuron models

with a reasonable computational complexity like that from

Izhikevich [10]. Simulation results [9] show that a group

of 1000 spiking neurons can easily be simulated on each

embedded ARM968 processor with the help of its tightly

coupled instruction and data memory. In line with biological

neural state dynamics, the state of every neuron is affected

by certain events such as the receipt of spikes. Each spike

reaches the neuron from a particular dendritic connection

with some synaptic weight associated with it. A weighted

input from the spiking connection accumulates to the total

stimulus to the neuron at a particular point in time. Biology

suggests that the neurons update their state in millisecond

temporal domain [11]. To realize this temporal notion, a

timing event has been provided to the processing core by

the Timer after every millisecond. Each neuron can have

over 1000 synaptic connections to receive spikes from other

neurons’ axons. The spike transmission speed in axons is

in the range of a few meters per second [11] that causes

an axonal delay of a few milliseconds [12] for a spike to

reach efferent neurons from the afferent one. In comparision,

packets simulating spikes in the SpiNNaker chip move in

nanoseconds. To achieve correct real-time results as that of

biology, we need to apply this weighted input to accumulate

into the stimulus to the neuron during its correct real-time

interval. We need to store the delay between current time and

the correct application time so that the input received now

can then be applied at that time.

If we store the synaptic weight associated with each

connection with the help of a 16-bit fixed-point number and

axonal delay with 4-bits in a hash table containing 11 bits

neuron’s index in each processor as the key to the table,

we require about 4-Bytes for one entry of the hash table to

represent each connection [9]. For 1000 neurons in a pro-

cessing core, each having 1000 connections [13], we require

1000x1000=1,000,000 words (4-MB) of data. The embedded

processors are constrained for their local memories to only

32KB(instruction)+64KB(data) memory. For a chip with 20

such processors, we require a memory storage for minimum

4x20=80MB. To alleviate this problem, we store the synaptic

information for each embedded processor’s neurons in the

SDRAM(up to 1GB). The DMA with each processing core

provides a notion of localised memory to each embedded

processing core while dealing with this data. The third event

in this application is from the DMA that indicates to the

processor that the relevant data is now loaded for a particular

efferent neuron into the processor’s local data memory and

it can now proceed with its execution on this data.

Due to these events the SpiNNaker application is an event-

driven real-time embedded application [14] that is quite

different from typical sequential or multiprocessor parallel

applications designed for parallel architectures. The follow-

ing sections present the standard application model along

with certain important architectural features and constraints

that need to be kept in mind for an optimal application

development.

1) Standard Application Model: Spike received event is

generated by the Communication Controller on receipt of

a multicast packet destined for neuron(s) in its processing

core. The Communication Controller sends an interrupt to

the Interrupt Controller to pass on to the processor. The

Timer is responsible for the millisecond time event interrupt,

while the DMA generates a completion interrupt after the

synaptic data for relevant neuron(s) is made available into

the processor’s local data memory for neural processing.

SpiNNaker uses the ARM Vector Interrupt Controller PL190

that can be configured with the help of the software for

interrupt priorities. 16 out of 32 interrupts can be configured

as vector interrupts i.e. the Interrupt Controller provides the

address of an interrupt service routine to handle the relevant

interrupt to the processor for fast execution of the interrupt

service routine. The SpiNNaker address space has been

distributed in such a way that the Vector Address Register

in the Interrupt Controller containing the address of relevant

interrupt service routine is not more than 4K away from the

interrupt vector table for the IRQ interrupt. This enables the

software to read the vector address register in the Vector

Interrupt Controller in only one CPU cycle. We propose

assigning the highest priority to the spike receive event,

followed by the DMA completion interrupt and the Timer’s

millisecond interrupt. The event-driven real-time application

model has been implemented with the help of interrupt

service routines. On receipt of an IRQ, the start address of

interrupt service routine is read by the embedded processor



Fig. 4. Standard Application Model.

from the Vector Address Register of the Interrupt Controller.

The functions responsible to update the projected stimulus

and the state of neurons membrane potential are called from

the relevent interrupt service routines as shown in Figure 4.

The interrupt service routine for packet received interrupt

requests a DMA read operation to bring in the synaptic

data for the relevant neurons from the SDRAM to update

stimulus for a projected time slot. On DMA completion

IRQ, the interrupt service routine calls a function to update

the stimulus for projected time slice at an axonal delay

distance from the current time by adding the synaptic weight

into the stimulus. The interrupt service routine on the timer

interrupt will update the membrane potential for all the

neurons simulated by each embedded processor. The default

code called at the end of each interrupt service routine puts

the processing core to sleep mode to conserve power.

2) Architectural Features Supporting the Application:

Almost any spiking neural simulation model can be im-

plemented on SpiNNaker, provided it is at a reasonable

computational complexity level or the scale of the simulation

may have to be compromised. The standard application

model suggests that the architectural characteristics of the

SpiNNaker chip should be kept in mind to fully utilize the

power of its design. A few important features of SpiNNaker

architectures that need to be made use of during application

development are summarized here. SpiNNaker is capable of

running highly parallel distributed applications on a million

plus embedded processing cores generating tremendous sys-

tem level throughput. The system has a very fast Spiking

Communication Network organized as a toroidal mesh to

support the spike transmission in a fraction of biological

time. The network can be configured dynamically under the

control of a application to support running any kind of neural

network. The network supports a number of packet types

that can be used for application execution and management.

The system has a large amount of memory distributed over

the system to hold large amount of application data. The

processing cores contain local fast memory for running

critical code. With the help of DMA and a fast network on

chip, the processing core gets a localized view of the whole

memory. The system is very scalable as a varying number of

chips can be connected to form a system scaled to a desired

simulation. The system makes use of low-power embedded

processing cores to conserve energy, a system that can run

for long time in a real-time temporal space to support large

scale neural simulation.

3) Architectural Constraints Affecting the Application:

Besides aforementioned features, there are a few important

aspects that need to be kept in mind for a judicious use of

the chip resources. There is a significant amount of memory

available in the system, however like the brain, the memory

is distributed over the entire system that needs to be used

as per the criticality of the code and data. We have a small

local, but fast, memory with each embedded processor that

should be used for running critical code maintaining the

state of the neurons and its state values; the large size

SDRAM can hold synaptic information to be loaded into

the local memory as and when required. The router has

been designed to do source based routing of the packets.

Total number of entries kept in the router are only 1K.

However, if we follow the guidelines for configuring the

routing table as explained in [15], i.e. mapping the neurons

onto the processors based on their connectivity and using

default routing to the maximum, these entries are sufficient

for large scale simulations. Virtually any kind of neural

network can be simulated over the SpiNNaker, however,

the design supports a biologically inspired spiking neural

network that can be mapped over the SpiNNaker hardware

and simulated with the help of its standard application model

in a comparatively easy way for better performance. As the

application is running distributedly, it is hard to synchronize

it at the system-level. The only way this can be done is

by sending messages among the chips and to/from the Host

System using small packets. For a real-time simulation to

run over a hard real-time system, it is important to devise an

efficient code to meet the critical time limits i.e. milliseconds

during which all neurons inside a processing core have to

update their state.

IV. BOOT-UP PROCESS

Configuring the SpiNNaker CMP system involves booting-

up each chip asynchronously while synchronizing the process

at the complete system level. The novel architecture of this

chip presents many challenges for an efficient configuration

and management of the system. Some of these challenges

are listed below:

a. The SpiNNaker chips do not have a dedicated hardwired

monitor processor. For the chip-level management (and

running an embedded Operating System), we require

at least one processor out of the 20 on-board to per-

form such activities. the main role of the monitor

processor is to help in preventing faults and if some

occur due to unavoidable circumstances, these shoud be

handled without disrupting the application. The monitor



processor is also responsible for running embedded

code for chip-level configuration and testing before an

application can run on the chip and later supporting

the application running on other processors (fascicles).

It is responsible for chip-level support functions like

configuring the routing tables on the fly etc. It is also

the responsibility of the monitor processor to maintain

a P2P communication with the Host System outside the

system and with other chips for system-level synchro-

nization and management. For all these reasons, the

code embedded into the Boot ROM needs to select,

at run-time, a processor in every chip to perform as

a monitor processor.

b. All the SpiNNaker chips are identical in every respect

with no dedicated address hardwired. For the P2P

communication to take place among the chips and that

to the Host System, we need to assign addresses to

these chips before the start of an application. For spike

traffic to function properly and the router to direct these

packets to their correct destination, we need to have chip

address as part of the source ID of the firing neuron. The

bootstrap code is responsible to assign a unique address

to each chip after the system starts.

c. For want of better fault-tolerance the size of Boot ROM

has been kept very small to avoid a single point of

failure. For this purpose the bootstrap needs to be very

small in size just to be able to perform chip-level Power

On Self Test (POST), some functional tests run to check

the application level functionality before the chip can

run the application, and configuration of chip devices

before the application can use them.

d. SpiNNaker needs to be attached to a Host System to

interact with the system. The Host System is a normal

PC for configuring the application before loading into

the SpiNNaker system and interacting at run-time to

provide stimulus to the system from the outside and

to receive the responses before transforming these to

some meaningful presentation to the user. This requires

some way of connecting the system to the Host Sys-

tem. Though every chip is provided with an Ethernet

Interface, only one (or a few) would be connected to

the Host System. A protocol needs to be devised to

connect the system to the Host System by enabling

Ethernet Interface(s) only in relevant chips and making

this communication possible in an efficient way.

e. A tailored spiking neural simulation is not embedded

into the chip and can simulate varying behaviours of a

particular neural network. The application is configured

outside the system along with the neural mapping and

connectivity configuration, which is then loaded into

the system and dovetailed with the interrupt service

routines to run as an application. This needs a detailed

protocol to load the application along with connectivity

configuration and synaptic information for each chip in

an efficient and scalable way.

f. After the application is running, we need to commu-

nicate interactively with the system to see the state of

the hardware devices and the application running on

the chips. It needs a way to interactively communicate

with each chip’s monitor processor to provide inside

information to the Host System. It also requires a com-

mon language to establish a meaningful communication

among the chips and then with the Host System using

small packets.

To handle these challenges, we have devised a very

detailed protocol to help configuration and management of

the system at chip- and system-level. Basic objective of the

configuration process is to provide an efficient and fault-

resilient way to bring each chip and thus the whole system

to a functional state to enable running large scale neural

applications in the most efficient way. Yet another objective

of this research is to provide a way to configure the system

in the most scalable way i.e. the configuration process may

be affected by the size of the system and amount of loadable

data size to the minimum. Important steps of the protocol

have been enumerated below:

• Perform a POST on every processing node and its

peripherals.

• Select a monitor processor out of the healthy processing

cores in each CMP.

• Perform detailed chip-level device tests followed by a

few functional tests to check the correct functionality of

chip resources.

• Perform chip-level recovery if part of the chip is non-

functional.

• Test connections to the neighbouring chips and mark

any faulty link or neighbour to avoid congestion by

avoiding packets sending to that direction.

• Attempt to cure an unhealthy chip with the help of its

neighbours (neighborhood probing).

• Load a micro-kernel in each monitor processors memory

from the Host System using broadcast NN packets.

• Assign addresses dynamically to the chips to enable

inter-chip point-to-point and multicast communication.

• Report the health of each chip resources to the Host

System to enable it configuring the application.

• Load the application to each chip using a broadcast

mechanism.

• Configure the routing tables for each chip to enable

routing.

• Replace an unhealthy monitor processor with another

processing core at the runtime and reset the chips or

their resources if not working properly.

V. APPLICATION LOADING PROCESS

A neural network simulation application along with neu-

ron’s mapping i.e. placing neurons on individual embedded

processors and the connectivity information needs to be

loaded into the system with the help of embedded boot-

up code. Along with the application, we need to load the

synaptic data into the SDRAM of each chip to be used

by the application during its execution. To establish neural



Fig. 5. Selective Forward Flood-fill.

connectivity, we need to configure the routing tables at

each chip to formulate a neural network. Besides the neural

application to run on fascicle processors, we need to load a

micro-kernel and a utility functions library to each chip’s

System RAM to be used by the monitor processor. This

requires a large amount of data to be loaded on the system

from the Host System with the help of Ethernet connection.

We plan to establish Ethernet connection between the system

and the Host System from only one or at most 4 chips.

The connection with more than one chip is for redundancy

to achieve better fault-tolerance. From the connected chip

to the rest of the system, the data is loaded with the help

of Communication Network that connects each chip with

its six neighbours. The communication between the Host

System and the connected chip is Ethernet Frame based

(upto 1500-B data) while the communication network uses

only small packets (4-B data). We need an efficient way

to load this data or it may take a very long time before

the application could be started on the system. An efficient

and fault-tolerant mechanism has been devised to load the

application into the system. The NN type of packet is used

to broadcast the data to the 6 neighbouring chips sending

one word (32-bits) at a time. The receiving chips store the

data if not received so far and broadcast it to its neighbours.

This way a pipelined wave of broadcast data flows from

the origin(s) to the whole system and wraps it around. As

part of this flood fill mechanism protocol, an instruction set

has been created to pass meaningful messages between the

monitor processors on the neighboring chips. Address space

0x0F800000 - 0x0FFFFFFF in the SpiNNaker address space

has been dedicated to contain these instructions in the NN

packet address field. Once an NN packet with an address

within this range is received, the monitor processor on the

other sides takes it as a special instruction as part of NN

conversation protocol. Figure 5 shows one of the selective

forward multicast mechanism for flood-filling the data in the

SpiNNaker system. The process of application loading into

the system works as follows:

• The application and the data is loaded to the connected

chip(s) one frame at a time.

• The frame contains the size of the data block along with

block level checksum for error detection. The connected

chip performs a checksum test on the block to accept

or reject it. If no errors are detected, the data block is

stored in the processor’s local data memory.

• The origin chip sends an instruction as part of NN

packet to indicated the size of block it is about to trans-

mit and the starting address of the block destination in

the SpiNNaker chip address space i.e. processor’s tightly

coupled memory, System RAM, Router or SDRAM.

• Each neighbouring chip dedicates a memory space in its

data tightly coupled memory equivalent to the size of

data block being received. It also initializes a bitmap

with each bit respresenting a word in the block to

indicate receipt of a word with bit value ’1’ in order to

control duplication. If a word has already been received,

it will neither be stored in the memory buffer nor will

be transmitted further.

• The physical address of the word is sent along with

the NN Packet in the routing key, again to control the

duplicate words.

• The last NN packet to transmit a block of data contains

an instruction indicating that a checksum is being passed

as the end of block level transfer.

• If the block passes the error detection test, it will be

loaded into the specified location in the memory address

space.

• If the passed-on block contains the application, it will

be loaded into the instruction tightly coupled memory

at a particular stage of the process and the control of

execution will be handed over to this application.

• Each chip receives a transmitted word at least twice

during the flood fill process for redundancy, in case a

link is broken or congestion on one side prohibits the

packet transmission from one neighbour.

• At the end of flood fill process, the host system asks

for the state of each chip along with blocks received.

At this stage, the chips can request from each other or

the Host System for any missing block.

• During neighbouring chip recovery process, the data

is locally transported by the neighbouring chip after a

faulty chip is repaired.

VI. HARDWARE ABSTRACTION LAYER

Despite the architectural intricacies, we provide a simple

user interface to support software development for the SpiN-

Naker system. A Hardware Abstraction Layer (HAL) has

been implemented as part of this research with the functions



to support these events and to update neurons states as a

result of these events. At low level, device drivers for all

the chip components like Communication Controller, Timer,

Vector Interrupt Controller, PL340, Multicast Router, DMA

Controller, System Controller and Watchdog Timer have

been provided. Besides these some middle layer functions

to support inter neuron’s communication have been provided

to send/receive spikes. The abstraction layer provides a

localised view of the whole memory to the user by handling

DMA operations in an efficient way. To support the event-

driven application model, interrupt service routines associ-

ated with these events have been implemented with entry

points for the high level application functions to perform

neural state and stimulus updates. Some high level functions

to support a sample application as explained in [9] have been

implemented as a guide to the developer. All these functions

have been implemented in ARM Assembly for ARM968E-S

for optimal performance. It is because the embedded real-

time application has hard time bounds of milliseconds to

update neural state to support a real-time simulation of

biologically inspired spiking neural simulation model. The

functions have been compiled in a library to be available to

the developer for application development without exposure

to the architectural intricacies. Library functions’ signatures

have been provided to the application developers for easy

portability of applications. The developers can use their own

definition of these functions with the same signatures while

developing the application on a PC or a cluster computer

with the similar functionality. Later the same application can

be compiled by including the SpiNNaker HAL library to

port it to the SpiNNaker architecture. It is to support early

development of the software while the hardware is still in

design phase.

A user friendly interface at the Host System to configure,

load and interact with the application running on the system,

as if it is running on a normal PC, is being developed as

part of this research. The interface shows the state of the

system as a graphical view and helps the user to interact

with the system. A sample application will be provided with

the interface as a tutorial for running the spiking neurons

application on SpiNNaker.

VII. VERIFICATION

The configuration process has been implemented using

ARM Assembly code and tested on a SystemC based

system-level model of a single- and multi-chip SpiNNaker

system developed using ARM SoC Designer. The model

uses a cycle accurate instruction set simulator for ARM968

processor from SoC Designer along with the models for

other ARM provided components such as Interrupt Con-

troller PL190, PL340 SDRAM Controller, Watchdog Timer

Controller, AHB bus, APB Bus and memories. All the

components provide cycle accurate behaviour and have been

tested by ARM. SystemC models for indigenously designed

components were prepared as part of this research [16]

like those for the MCRouter, Communication Controller,

Communication NoC, asynchronous Tx and Rx interfaces

TABLE I

BOOT-UP PROCESS TIME

No. of Chips No. of Procs. No. of Cycles Cycles/sec

1 1 305712 40415

1 2 322507 32609

1 3 334696 31839

3 3 334712 3633

and System Controller etc. The model as a whole provides

a cycle approximate behaviour as expected from a SystemC

Transaction Level Model (TLM) of a system-level model.

The model simulates 3 processing cores per chip as expected

in the test chip for simplicity of simulation on the host PC

with limited memory. The code can be tested for performance

and debugged for semantic correctness. All the memory loca-

tions can be viewed to verify the code execution correctness.

The configuration code was loaded into the Boot ROM and

after the enabling of the processors’ tightly coupled memory

was loaded into ITCM.

The code execution time is not dependent on the number

of chips in the system as it runs concurrently on all the

chips. However, the number of processors on the chips do

affect overall time as the code needs to be copied to the

processor’s local memory from the Boot ROM and because

all the processors will be copying from the same source, it

will delay the process due to the contention while accessing

the system NoC as shown in Table I. Column 3 shows the

CPU cycles of ARM968 processor used to execute chip level

boot-up code, while column 4 shows the speed of simulation

on the host PC. For SpiNNaker chip, we are able to run

ARM968 processors at 200MHz.

Loading the application using Ethernet Frames from the

Host System to the connected chip was also tested on this

system-level model with one chip simulation. However, as

the model can not simulate a large scale system due to its

computational complexity, the flood-fill process was tested

on a higher level abstract model simulating only the Com-

munication Network with the help of timing related to send

and receive of packets obtained from the detailed system-

level simulation. The results of the simulation are shown in

Figure 6. The results show that the flood-fill process is not

dependent on the size of the system. This is because each

chip passes on the packet to its six neighbours and for a large

size of application like 100KB, the number of hops to reach

the farthest point from the origin in the (256x256=64K chips)

system is neglegible compared to 25K packets. The results

also show that the process does not take long for a large size

of data to be filled in. One surprising result is that the flood-

fill process is not dependant on the number of Ethernet links

to the system as there is hardly any performance gain with 4

Ethernet links over the one. There is however a considerable

gain of performance if we adapt selective multicast to send

packets to the forward direction instead of broadcasting to all

the six neighbors that causes congestion. It is very logical as

we should not be sending the packets back to the neighbours

we are getting these from. However, we need to be very



Fig. 6. Application Loading on SpiNNaker a, b, c.

selective to provide reasonable redundancy of the packets

being sent so that a chip may not use a data block even if only

one word is missing due to some transmission problem. We

need to maintain a logical balance between the performance

and redundancy (fault-tolerance). We can compromise on

performance in favour of fault-tolerance at this stage as

the application and the data is very critical to the overall

simulation.

An event driven model for target application using Izhike-

vich model as explained in [9] has been implemented using

this configuration process. The application runs fine updating

the neural state in millisecond temporal dimension while

sending and receiving spikes as per the neural dynamics

model. With these results we are quite confident in the design

and functionality of the SpiNNaker system and expect the

system will be very useful to the research community to

exploring the mysteries of human brain.

VIII. CONCLUSIONS

We are researching a novel technique to configure a

large-scale CMP system with a high degree of efficiency

and fault-resilience. To avoid a single point of failure, the

selection of monitor processor in a chip and chip address

assignment has been kept soft. One processor is chosen out

of 20 on-board embedded ARM968s to perform as a monitor

processor for managing the chip resources and synchronizing

the application at the system-level. A mechanism has been

designed to assign virtual addresses to all chips for inter-chip

communication. All chip components will be configured,

tested and accessed with the help of embedded device

drivers’ code written specifically as part of this research.

We provide a library of functions to support application

developers to develop spiking neuron simulation applications

without exposure to the architectural details of SpiNNaker

SoC. A small size Boot ROM contains code just enough to

test and configure the chip resources. Neighbouring chips can

examin each other’s resources for diagnostics and recovery

purpose using NN packets. Thus a chip can still boot-up

without a Boot ROM with the help of its neighboring chips.

A novel flood-fill mechanism has been devised to load large-

size applications on the chips from a Host System outside

the SpiNNaker system. The mechanism loads the application

quite efficiently, independent of the size of the system using a

NN packets broadcast mechanism. A cycle- and instruction-

accurate SystemC based system-level model for the SpiN-

Naker SoC has been prepared to verify the design objectives.

The simulation shows that the chip can be configured very

efficiently and made available to the application. A high-

level simulation for the inter-chip communication network

suggests that application loading into the system is very

efficient, independent of the scale of the system.

A user-friendly software interface has been designed to

interact with the system from the Host System. The user in-

terface running on the Host System would help in configuring

the system, debugging a particular hardware component, and

running a neural simulation in an interactive way. Presently

we are working on refining the flood-fill mechanism to load

the application with a selective forward multicast instead

of broadcasting the NN packet to all the neighbours for

better performance as suggested by the simulation. We are

also working on refining the user interface to help configure

the application before loading into the system. We are

continuously interacting with the application developers at

the University of Southampton to find the best way to map

neural networks on the system and to optimally configure

the routing tables for inter-neuron connectivity.
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